If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90x^2=110
We move all terms to the left:
90x^2-(110)=0
a = 90; b = 0; c = -110;
Δ = b2-4ac
Δ = 02-4·90·(-110)
Δ = 39600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{39600}=\sqrt{3600*11}=\sqrt{3600}*\sqrt{11}=60\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{11}}{2*90}=\frac{0-60\sqrt{11}}{180} =-\frac{60\sqrt{11}}{180} =-\frac{\sqrt{11}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{11}}{2*90}=\frac{0+60\sqrt{11}}{180} =\frac{60\sqrt{11}}{180} =\frac{\sqrt{11}}{3} $
| -6x-71=73-12x | | 2x-119=-9x+79 | | -8x-7=19-7x | | t^2+10t-135=0 | | -146-3x=-9x+58 | | 3n=2(n+3) | | 3(5p+4)-2(p+7)=24 | | 3c+18=42 | | 5^x-25^x=-2 | | (9x-20)+(2x+36)=180 | | 63+x=133+x | | 10=4.50h | | 165=76-x | | 4^2x-4^(x+1)+3=0 | | m=8+10/12+12 | | r+4.14=27.84 | | x+18+7x-16=90 | | 7r+3=8r-6 | | 2x-4(2x-2)=-6x+8 | | 9e+5e+6=90 | | x+5/3=x+3/2 | | 5t-6=7t | | -5(3x-5)=105 | | 4m+5=2m-10 | | H(t)=-25t-5t+1260 | | 4x/5+2/5=6/5 | | -10x+10=90 | | -2y-6=144 | | -6z+10=112 | | -x+6=112 | | -y-5=68 | | 9z-7=101 |